144. Plas C, Plater SM, Lindroth AM, et al. Mutations in regulators of the epi-


146. Yamamoto K, Saitoh H, Yamano HO, et al. Molecular dissection of prema-


148. Bleeker FE, Bardelli A. Genomic landscapes of cancers: prospects for tar-

149. Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correla-


152. Pao W, Chirieac LE. Rational, biologically based targeting of EGFR-


158. Tejpar S, Bettagrolli M, Bosman F, et al. Prognostic and predictive biomar-
kers in rectal cancer: current status and future perspectives for inte-


169. Duke LA, Jr Williams RT, Wu J, et al. The molecular evolution of ac-

170. Robbins PF, Lu YE, JG Gran M, et al. Mining exonic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-rec-


172. Cahill DP, Levine KK, Betensky RA, et al. Loss of the mismatch repair pro-
tein MSH6 in human glioblastomas is associated with tumor progression dur-


175. Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of ima-
tribin resistance in gastrointestinal stromal tumour. J Clin Oncol 2006;24:
474–477.


178. Kwak EL, Sondella R, Bell DW, et al. Irreversible inhibitors of the EGFR re-

179. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarci-
nomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2008;5:275.


182. Imai K, Toyooka S, Ito S, et al. Presence of epidermal growth factor recep-

